Extremal results in sparse pseudorandom graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal Results in Sparse Pseudorandom Graphs Jacob

3-Connected Minor Minimal Non-Projective Planar Graphs with an Internal 3-Separation Arash Asadi, Georgia Institute of Technology The property that a graph has an embedding in the projective plane is closed under taking minors. So by the well known theorem of Robertson and Seymour, there exists a finite list of minor-minimal graphs, call it L, such that a given graph G is projective planar if a...

متن کامل

Extremal results in sparse pseudorandom graphs

Szemerédi’s regularity lemma is a fundamental tool in extremal combinatorics. However, the original version is only helpful in studying dense graphs. In the 1990s, Kohayakawa and Rödl proved an analogue of Szemerédi’s regularity lemma for sparse graphs as part of a general program toward extending extremal results to sparse graphs. Many of the key applications of Szemerédi’s regularity lemma us...

متن کامل

Extremal results for odd cycles in sparse pseudorandom graphs

We consider extremal problems for subgraphs of pseudorandom graphs. Our results implies that for (n, d, λ)-graphs Γ satisfying λ2k−1 ≪ d 2k n (log n)−2(k−1)(2k−1) any subgraph G ⊂ Γ not containing a cycle of length 2k + 1 has relative density at most 12 + o(1). Up to the polylog-factor the condition on λ is best possible and was conjectured by Krivelevich, Lee and Sudakov.

متن کامل

Extremal Results in Random Graphs

According to Paul Erdős [Some notes on Turán’s mathematical work, J. Approx. Theory 29 (1980), page 4] it was Paul Turán who “created the area of extremal problems in graph theory”. However, without a doubt, Paul Erdős popularized extremal combinatorics, by his many contributions to the field, his numerous questions and conjectures, and his influence on discrete mathematicians in Hungary and al...

متن کامل

Extremal Cuts of Sparse Random Graphs

For Erdős-Rényi random graphs with average degree γ, and uniformly random γ-regular graph on n vertices, we prove that with high probability the size of both the Max-Cut and maximum bisection are n( γ 4 + P∗ √ γ 4 + o( √ γ)) + o(n) while the size of the minimum bisection is n( γ 4 − P∗ √ γ 4 + o( √ γ)) + o(n). Our derivation relates the free energy of the anti-ferromagnetic Ising model on such ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2014

ISSN: 0001-8708

DOI: 10.1016/j.aim.2013.12.004